
RTP Programming  [FADI ABDELQADER – FADI@SOCKETCODER.COM]  

 

1  |P A G E 

 

How to use the managed RTP API classes in .NET to create 

your multicasting systems 

Create an RTP multicasting presenter (with motion detection) 

 

Introduction 

In this article, I will describe the architecture of RTP – Real Time Transport 

Protocol, and discuss the RTP managed classes for the Microsoft Conference XP 

Project to multicast JPEG images. For more examples of RTP programming, see 
www.SocketCoder.com. 

The key standard for data audio/video transport in IP networks is the Real-time 

Transport Protocol (RTP), along with its associated profiles and payload formats. 

RTP aims to provide services useful for the transport of real-time media, such as 

audio and video, over IP networks. These services include timing recovery, loss 

detection and correction, payload and source identification, reception quality 

feedback, media synchronization, and membership management. RTP was 

originally designed for use in multicast conferences, using the lightweight 

sessions model. Since that time, it has proven useful for a range of other 

applications: in H.323 video conferencing, webcasting, and TV distribution; and in 

both wired and cellular telephony. The protocol has been demonstrated to scale 
from point-to-point use to multicast sessions with thousands of users. 

  



RTP Programming  [FADI ABDELQADER – FADI@SOCKETCODER.COM]  

 

2  |P A G E 

 

Background 

How does RTP work? 

 

A sender is responsible for capturing and transforming audiovisual data for 

transmission, as well as for generating RTP packets. It may also participate in 

error correction and congestion control by adapting the transmitted media stream 

in response to receiver feedback. The frames will be loaded into RTP packets, 

ready for sending. If frames are large, they may be fragmented into several RTP 

packets; if they are small, several frames may be bundled into a single RTP 

packet. Depending on the error correction scheme in use, a channel coder may be 

used to generate error correction packets or to reorder packets before 

transmission. After the RTP packets have been sent, the buffered media data 

corresponding to those packets is eventually freed. The sender must not discard 

data that might be needed for error correction or for the encoding process. This 

requirement may mean that the sender must buffer data for some time after the 

corresponding packets have been sent, depending on the codec and error 

correction scheme used. The sender is responsible for generating periodic status 

reports for the media streams it is generating, including those required for lip 

synchronization. It also receives reception quality feedback from other 

participants, and may use that information to adapt its transmission. A receiver is 

responsible for collecting RTP packets from the network, correcting any losses, 

recovering the timing, decompressing the media, and presenting the result to the 

user. It also sends reception quality feedback, allowing the sender to adapt the 

transmission to the receiver, and it maintains a database of participants in the 

session. A possible block diagram for the receiving process is shown in the figure 

below; implementations sometimes perform the operations in a different order 
depending on their needs. 



RTP Programming  [FADI ABDELQADER – FADI@SOCKETCODER.COM]  

 

3  |P A G E 

 

 

In my next article, I will provide more info about the RTP architecture to transmit 

audio and video. For more information about RTP, see the following links: 

• SocketCoder.com  

• RFC 3550 (RFC3550)  

Using the code 

Microsoft has implemented the RTP in its Conference XP project. The following 
diagram illustrates the architecture design of the RTP in Conference XP 3.0: 

 

These steps will give you a brief of how to use the RTP on your multicasting 
projects: 

1. Using RtpSession and RtpParticipant: A session consists of a group 

of participants who are communicating using RTP. A participant may be 

active in multiple RTP sessions—for instance, one session for exchanging 

audio data, and another session for exchanging video data. For each 

participant, the session is identified by a network address, and a port pair 



RTP Programming  [FADI ABDELQADER – FADI@SOCKETCODER.COM]  

 

4  |P A G E 

 

to which data should be sent and a port pair on which data is received. 

The send and receive ports may be the same. Each port pair comprises of 

two adjacent ports: an even-numbered port for RTP data packets, and the 

next higher (odd-numbered) port for RTCP control packets. The default 

port pair is 5004 and 5005 for UDP/IP, but many applications dynamically 

allocate ports during session setup and ignore the default. RTP sessions 

are designed to transport a single type of media; in a multimedia 

communication, each media type should be carried in a separate RTP 

session. We will use the RtpSession and RtpParticipant classes to:  

o Manages all of the RTP objects and data.  

o Hold information about a user.  
o To send or receive RTP data.  

We have first hook some RTP events to communicate for what is 
happening in the RTP API process. These are: 

// Manage the join to the session Ex.Add/Remove a User To/From the RTP 

Session 

RtpEvents.RtpParticipantAdded += new  

   RtpEvents.RtpParticipantAddedEventHandler(RtpParticipantAdded); 

RtpEvents.RtpParticipantRemoved += new  

   RtpEvents.RtpParticipantRemovedEventHandler(RtpParticipantRemoved); 

Examples of using the above event declarations: 

private void RtpParticipantAdded(object sender, 

RtpEvents.RtpParticipantEventArgs ea) 

{ 

  MessageBox.Show (ea.RtpParticipant.Name + " has joined to the 

session"); 

} 

 

private void RtpParticipantRemoved(object sender,  

             RtpEvents.RtpParticipantEventArgs ea) 

{ 

  MessageBox.Show(ea.RtpParticipant.Name + " has left the 

session"); 

} 

 

// Manage (Add/Remove)Sessions Ex.Activeate multiple RTP 

sessions  

RtpEvents.RtpStreamAdded +=  

  new RtpEvents.RtpStreamAddedEventHandler(RtpStreamAdded); 

RtpEvents.RtpStreamRemoved +=  

  new RtpEvents.RtpStreamRemovedEventHandler(RtpStreamRemoved); 

private void RtpStreamAdded(object sender, 

RtpEvents.RtpStreamEventArgs ea) 

{ 

    ea.RtpStream.FrameReceived +=  

       new RtpStream.FrameReceivedEventHandler(FrameReceived); 

} 

 

private void RtpStreamRemoved(object sender, 

RtpEvents.RtpStreamEventArgs ea) 

{ 

    ea.RtpStream.FrameReceived -=  

       new RtpStream.FrameReceivedEventHandler(FrameReceived); 

} 

  



RTP Programming  [FADI ABDELQADER – FADI@SOCKETCODER.COM]  

 

5  |P A G E 

 

Then to join the RTP session, we have to specify the type of the 
RTP packet payload. Each session can contain only payload type: 

RtpSession rtpSession; 

 

private void JoinRtpSession(string SessionName,string name) 

{ 

  rtpSession = new RtpSession(ep, new 

RtpParticipant(SessionName, name),  

                              true, true); 

  rtpSender = rtpSession.CreateRtpSenderFec(name, 

PayloadType.JPEG, null, 0, 200); 

} 

private void LeaveRtpSession() 

{ 

  // Clean up all outstanding objects owned by the RtpSession 

  rtpSession.Dispose(); 

} 

Finally, after joining the session, we can get the RTP stream buffer, 

as below: 

private void FrameReceived(object sender, 

RtpStream.FrameReceivedEventArgs ea) 

{ 

  System.IO.MemoryStream ms = new 

MemoryStream(ea.Frame.Buffer); 

  pictureBox_Receive.Image = Image.FromStream(ms); 

} 

o Using RtpSender and RtpListener: The sender is responsible for 

sending the captured data and generating RTP packets - the data 

can be from live capturing or from a file - compressing it for 

transmission. For example, converting a bitmap image to a JPEG 

compressed image, as I used in my example. The sender starts by 

reading media data, such as video frames, into a buffer from which 

encoded frames are produced. In the Managed RTP Library, the 

RtpSender is used for:  

� Sending data across the network.  
� Send with or without data being forward error corrected.  

And, in the RTPListener: 

� One thread receives data off the network.  

� One thread distributes packets to the appropriate stream for 
processing.  

Use the RTPSender as shown below: 

RtpSender rtpSender; 

 

MemoryStream ms = new MemoryStream(); 

// Compressed  the captured image as JPEG image format 

pictureBox_sender.Image.Save(ms, ImageFormat.Jpeg); 

// Send The The Comressed Image as Bytes stream 

rtpSender.Send(ms.GetBuffer()); 



RTP Programming  [FADI ABDELQADER – FADI@SOCKETCODER.COM]  

 

6  |P A G E 

 

RTCP Management: RTCP packets are defined in the RTP 

specification: receiver report (RR), sender report (SR), source 

description (SDES), membership management (BYE), and 

application-defined (APP). The RTCP Sender is used for outgoing 
RTCP data where: 

� Local participants and streams are joining or leaving.  
� Sender and receiver reports for network status.  

RtcpListener is used to: 

� Processes incoming RTCP (RTP Control Protocol) data.  

� Participants and streams join or leave.  

� Sender and receiver reports for network status.  
o Performance Counters  

Used to keep track of interesting network statistics, such as bytes, 

packets, frames per second, lost bytes, and recovered bytes. All of 

these are contained in the RTP API class properties. 

Increase network usage performance: 

To increase the performance in my example, I used a mechanism 

to send just only the new screen-captured image that is different 

than the previous captured image. This will reduce the usage of the 

network resources so I compare the pixels of the image before 

sending it, and to speed up the comparison, I resize the image to 
100X100 and then I compare it pixel by pixel, as shown below: 

public float difference(Image OrginalImage, Image SecoundImage)  

{ 

    float percent = 0;  

    try 

    {  

        float counter = 0;  

        Bitmap bt1 = new Bitmap(OrginalImage);  

        Bitmap bt2 = new Bitmap(SecoundImage);  

        int size_H = bt1.Size.Height;  

        int size_W = bt1.Size.Width;  

        float total = size_H * size_W; Color pixel_image1;  

        Color pixel_image2;  

        for (int x = 0; x != size_W; x++)  

        {  

            for (int y = 0; y != size_H; y++)  

            {  

                pixel_image1 = bt1.GetPixel(x, y);  

                pixel_image2 = bt2.GetPixel(x, y); 

                if (pixel_image1 != pixel_image2)  

                {counter++; }  

            }  

        }  

        percent = (counter / total) * 100;  

    }  

    catch (Exception) {percent=100;}  

    return percent; 

} 



RTP Programming  [FADI ABDELQADER – FADI@SOCKETCODER.COM]  

 

7  |P A G E 

 

The above method will calculate the difference pixels in the new 

captured image so we can decide to send it or not depending on 

the returned difference percentage. 

References 

• Microsoft Conference XP Project  

• RTP: Audio and Video for the Internet, Addison Wesley 2003.  

• The Complete Reference to Network Programming, FADI Abdelqader 
(under writing). See: www.SocketCoder.Com.  

• RFC3550.  

License 

This article, along with any associated source code and files, is licensed under The 
Code Project Open License (CPOL) 

About the Author 

 

 

 

Fadi M. Abdelqader  

Personal Site: www.SocketCoder.com 

 

Education: 

- MA. Degree In CINS DePaul University  

 

- Bsc. In Computer Networking From Phildelphia University 

Graduate With Honor. 

 

Researches:  

He Published a Set of Researches to Develop a Set of 

Advanced Systems Such as Remote Monitoring System, 

Remote Controlling System, Advanced Video Conferencing 

System, Voice Communication & Voice Conferencing System 

& Remote Classrooms & Distance Learning Systems 

 

Books: 

He Authored a Book in .Net Network, Distributed Systems & 

TCP/IP Programming ; Read all information about this book in 

his site 

http://www.socketcoder.com/ReleasedBooks.aspx?index=1 

 

 


